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Abstract

We present a Body Measurement network (BMnet) for esti-
mating 3D anthropomorphic measurements of the human
body shape from silhouette images. Training of BMnet
is performed on data from real human subjects, and
augmented with a novel adversarial body simulator (ABS)
that finds and synthesizes challenging body shapes.
ABS is based on the skinned multiperson linear (SMPL)
body model, and aims to maximize BMnet measurement
prediction error with respect to latent SMPL shape pa-
rameters. ABS is fully differentiable with respect to these
parameters, and trained end-to-end via backpropagation
with BMnet in the loop. Experiments show that ABS
effectively discovers adversarial examples, such as bodies
with extreme body mass indices (BMI), consistent with
the rarity of extreme-BMI bodies in BMnet’s training
set. Thus ABS is able to reveal gaps in training data
and potential failures in predicting under-represented
body shapes. Results show that training BMnet with ABS
improves measurement prediction accuracy on real bodies
by up to 10%, when compared to no augmentation or
random body shape sampling. Furthermore, our method
significantly outperforms SOTA measurement estimation
methods by as much as 3x. Finally, we release BodyM,
the first challenging, large-scale dataset of photo silhou-
ettes and body measurements of real human subjects, to
further promote research in this area. Project website:
https://adversarialbodysim.github.io.

1. Introduction

Reconstruction of the 3D human body shape from im-
ages is an important problem in computer vision which
has received much attention in the last few years [9, 14–
17, 22, 23, 27, 31–33, 35, 39, 40, 45, 50, 54, 61, 62, 68, 84–
86, 92, 93, 96]. However, 3D shape is not directly usable for
applications where anthropomorphic body measurements
are required. In healthcare, for example, measurements
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such as waist girth are a key indicator of body fat; while in
the fashion industry, metric body measurements enable size
recommendations and made-to-measure garments. Surpris-
ingly, much less work has been published on directly esti-
mating body measurements from images. This is the prob-
lem that we address in this paper. Note that body measure-
ments can be viewed as a compact yet rich descriptor for
3D body shape. Indeed, previous work has shown that it is
possible to accurately map a few body measurements to a
3D body mesh in a reference pose [57, 71].

Most existing body reconstruction methods do not in-
corporate knowledge of camera intrinsics or scale, and thus
cannot guarantee metric accuracy (i.e. the distance between
two points on the recovered mesh may not correspond to
physical distances on a person’s body) [34, 72, 80]. Fur-
thermore, since these approaches have only been trained
to generate a posed 3D avatar of a human, the body mea-
surements have to be derived from the predicted mesh,
which can limit resolution and accuracy. Finally, acquir-
ing physical body measurements at scale is costly and time-
consuming; hence, there is a dearth of training datasets
pairing images with measurements of real humans. To cir-
cumvent this challenge, previous efforts have used synthetic
data for training [19, 78], and evaluated on very small num-
bers (2-4) of human subjects [11, 19].

We present a method to predict body measurements from
images that alleviates these shortcomings. We train a con-
volutional body measurement network (BMnet) to directly
predict measurements from two silhouette images of a per-
son’s body. Silhouettes effectively convey body shape in-
formation, while preserving user privacy. To resolve scale
ambiguity, we include height and weight as additional in-
puts to BMnet. We introduce a novel adversarial body sim-
ulator (ABS) that automatically discovers and synthesizes
body shapes for which BMnet produces large prediction er-
rors. ABS is fully differentiable with BMnet in-the-loop.
It uncovers weaknesses in the model and gaps in the train-
ing data. For example, body shapes returned by ABS tend
to be of predominantly high body-mass-index (BMI), con-
sistent with the fact that these shapes are under-represented
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(a) (b)

Figure 1: (a) Differentiable silhouette simulator: SMPL model M generates a body mesh from shape and pose parameters
β and θ, which is passed to silhouette renderer R (parameterized by lighting ι and camera γ), and measurement extractor g.
Regressor h generates height ξ and weight ω from β. (b) Adversarial shape optimization: The simulator renders silhouettes
that are passed to BMnet (f ) along with height ξ and weight ω to obtain measurement estimates, which are compared to ground
truth measurements (also generated by the simulator). The error is maximized with respect to shape β under fixed pose θ.

in training. Fine-tuning BMnet with samples generated by
ABS improves accuracy (up to 10%) and robustness on real
data, achieving state-of-art results. To train and evaluate
BMnet, we introduce a new dataset, BodyM, comprising
full-body silhouette images of 2,505 subjects in frontal and
lateral poses, accompanied by height, weight, and 14 body
measurements derived from 3D scans. To our knowledge,
this is the first dataset that pairs photo silhouettes and body
measurements for real humans at such a scale.

The main contributions of this work are:

• BMnet: A deep CNN to directly regress physical body
measurements from 2 silhouettes, height and weight;

• ABS: A novel differentiable simulator for generating
adversarial body shapes with BMnet in-the-loop, un-
covering training gaps and improving BMnet perfor-
mance on real data (up to 3x);

• BodyM: A new dataset for body measurement esti-
mation comprising silhouettes, height, weight and 14
physical body measurements for 2, 505 humans, pub-
licly available for research purposes 1.

2. Related Work
Body reconstruction from RGB images: The litera-

ture on recovering 3D human representations from RGB im-
ages is vast; see [83] and [85] for excellent surveys. Tech-
niques fall broadly into two categories. Parametric meth-
ods characterize the human body in terms of a parametric
model such as SMPL{-X} [45, 53], Adam [30], SCAPE [3],
STAR [51], or GHUM [88]. Model parameters defining
body pose and shape are then estimated from images via
direct optimization [10, 53, 87, 93], regression with deep
networks [9, 16, 17, 27, 31–33, 40, 50, 61, 62, 94], or a
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combination of the two [34]. In contrast, non-parametric
methods directly regress a 3D body representation from im-
ages using graph convolutional neural networks [14, 35],
transformers [41], combinations of both [42], intermedi-
ate representations such as 1D heatmaps [49] or 2D depth
maps [79], or with implicit functions [18, 68]. Recently,
there have been successful explorations on probabilistic ap-
proaches for shape and pose estimation [36, 69–71].

Body reconstruction from silhouettes: Methods have
been proposed to predict 3D body model parameters from
binary human silhouette images [4, 5, 20, 55, 72]. Our ap-
proach is similar in flavor, but addresses a different task
of predicting physical body measurements from silhouettes.
Our constrained pose setting, height and weight inputs, and
adversarial training scheme enable measurement prediction
with state-of-art metric accuracy.

Body measurement estimation: Dibra et al. [19] re-
ported the first attempt at using a CNN to recover a 3D body
mesh and anthropomorphic measurements from silhouettes.
The silhouettes are generated synthetically by rendering 3D
meshes from the CAESAR (Civilian American and Euro-
pean Surface Anthropometry Resource) dataset [60] onto
frontal and side views, and body measurements are derived
as geodesic distances on 3D meshes. In contrast, our ap-
proach is trained on data from both real and synthetic hu-
mans, directly regresses measurements, and employs adver-
sarial training for improved performance. Our approach is
most closely related to the works of [78] and [90]. Yan et
al. [90] use their BodyFit dataset to train a CNN to pre-
dict measurements from silhouette pairs. Smith et al. [78]
proposed a multitask CNN to estimate body measurements,
body mesh, and 3D pose from height, weight, two silhou-
ette images and segmentation confidence maps. For train-
ing, they generate synthetic body shapes by sampling the
SMPL shape space with multivariate Gaussian shape dis-
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tributions and stochastic perturbations of body shapes from
CAESAR. In contrast to both these methods, our approach
seeks adversarial samples in the low performance regime
of BMnet, enabling automatic discovery and mitigation of
weaknesses in dataset and network in a principled manner.

Synthesis for training: With advances in simulation
quality and realism, it has become increasingly common
to train deep neural networks using synthetic data [21, 24,
40, 59, 63]. Recently, there have been attempts at learn-
ing to adapt distributions of generated synthetic data to im-
prove model training [2, 6–8, 25, 46, 66, 74, 91]. These
approaches focus on approximating a distribution that is
either similar to the natural test distribution or that mini-
mizes prediction error. Another flavor of approaches probes
the weaknesses of machine learning models using synthetic
data [28, 37, 38, 48, 56, 67, 77]. The works of [1, 76, 95]
generate robust synthetic training data for object recogni-
tion and visual-question-answering by varying scene pa-
rameters such as pose and lighting, while preserving object
characteristics. Shen et al. [75] tackle vehicle self-driving
by introducing adversarial camera corruptions in training.
In our work, we explore the impact of varying interpretable
parameters that directly control human body shape.

Adversarial techniques: We take inspiration from the
literature on adversarial attacks of neural networks [12, 26,
52, 81] and draw from ideas for improving network robust-
ness by training on images that have undergone white-box
adversarial attacks [47]. The main difference lies in the
search space: previous works search the image space while
we search the interpretable latent shape space of the body
model. The works by [58, 65] find synthetic adversarial
samples for faces using either a GAN or a face simula-
tor. They are successful in finding interpretable attributes
leading to false predictions; however, they do not incorpo-
rate this knowledge in training to improve predictions on
real examples. In our work, we both discover adversarial
samples and use them in training to improve body measure-
ment estimation. Different from previous methods, we find
adversarial bodies by searching the latent space of a body
simulator comprising a pipeline of differentiable submod-
ules, namely: a 3D body shape model, body measurement
estimation network, height and weight regressors, and a ren-
derer based on a soft rasterizer [43].

Datasets: Widely used human body datasets such as
CAESAR [60] contain high volumes of 3D scans and body
measurements; however these do not come with real im-
ages, which must therefore be simulated from the scans
with a virtual camera. Recently Yan et al. [90] published
the BodyFit dataset comprising over 4K body scans from
which body measurements are computed, and silhouettes
are simulated. They also present a small collection of pho-
tographs and tape measurements of 194 subjects. To resolve
scale, they assume a fixed camera distance. Our BodyM is

the first large-scale dataset comprising body measurements
paired with silhouettes obtained by applying semantic seg-
mentation on real photographs. To resolve scale, we store
height and weight (easy to acquire) rather than assume fixed
camera distance (hard to enforce in practice).

3. Method
We use the SMPL model [45] as our basis for adversar-

ial body simulation. SMPL characterizes the human form
in terms of a finite number of shape parameters β and pose
parameters θ. Shape is modeled as a linear weighted com-
bination of basis shapes (with weights β) derived from the
CAESAR dataset, while pose is modeled as local 3D rota-
tion angles θ on 24 skeleton joints. SMPL learns a regressor
M(β, θ) for generating an articulated body mesh of 6890
vertices from specified shape and pose using blend shapes.

3.1. Body Measurement Estimation Network

BMnet takes as input either single or multi-view silhou-
ette masks. For single-view, only a frontal segmentation
mask is used. For multi-view, the model also leverages the
lateral silhouette which provides crucial cues for accurate
measurement in the chest and waist areas. Additionally, we
use height and weight as input metadata. Height removes
the ambiguity in scale when predicting measurements from
subjects with variable distance to the camera, while weight
provides important cues for body size and shape. Our multi-
view measurement estimation network can be written as:

y = fψ(xf , xl, ξ, ω), (1)

where xf and xl are respectively the frontal and lateral sil-
houettes, (ξ, ω) are the height and the weight of the subject,
and ψ represents network weights.

The network architecture comprises a MNASNet back-
bone [82] with a depth multiplier of 1 to extract features
from the silhouettes. Each silhouette is of size 640 × 480
and the two views are concatenated spatially to form a
640× 960 image. Constant-valued images of the same size
representing height and weight are then concatenated depth-
wise to the silhouettes to produce an input tensor of dimen-
sion 3 × 640 × 960 for the network. The resulting feature
maps from MNASNet are fed into an MLP comprising a
hidden layer of 128 neurons and 14 outputs corresponding
to body measurements. Unlike previous approaches that at-
tempt the highly ambiguous problem of predicting a high-
dimensional body mesh and then subsequently computing
the measurements from the mesh [19], we directly regress
measurements, thus requiring a simpler architecture and ob-
viating the need for storing 3D body mesh ground truth.

3.2. Adversarial Body Simulator

We present an adversarial body simulator (ABS) that
searches the latent shape space of the SMPL model in order



to find body shapes that are challenging for BMnet. Given
a set of shape and pose parameters (β, θ), we generate a
SMPL body mesh M(β, θ). We then render a 2D silhouette
image x of this body using a graphics renderer R(), given
camera parameters γ and lighting conditions ι:

x = R(M(β, θ), ι, γ). (2)

Combining Eq. 1 and 2 we arrive at an expression for mea-
surements predicted by BMnet for a SMPL body as:

y = fψ(R(M(β, θ), ι, γf ), R(M(β, θ), ι, γl), ξ, ω), (3)

where y is the vector of body measurements predicted by
BMnet; γf are the frontal camera parameters, γl are the
lateral camera parameters where the camera azimuth has
been decreased by 90 degrees, and (ξ, ω) are the height and
weight of the subject. The goal of adversarial simulation is
to seek challenging inputs that result in high measurement
prediction lossL(y, ygt) = ||y−ygt||2 where ygt are ground
truth measurements:

max
β

[L(fψ(xf (β), xl(β), ξ, ω), ygt)], (4)

where, xf (β) and xl(β) are the frontal and profile renders
with shape parameters β. We construct our setup so that loss
L is differentiable with respect to shapes β, enabling the
use of gradient back-propagation to find adversarial sam-
ples. We now investigate in detail the dependence of y and
ygt on β. Turning first to y in Eq. 3, the SMPL model M
is linear and thus differentiable with respect to β. The ren-
derer R is designed as a differentiable projection operator
from the 3D body mesh to a 2D silhouette. First, the posed
body is lit by a frontal diffuse point light and captured by a
perspective camera pointed towards the body mesh. The 2D
image is generated using a fully-differentiable soft silhou-
ette rasterizer that aggregates mesh triangle contributions to
each 2D pixel in a probabilistic manner [43]. While light-
ing is not critical for silhouette generation, we include it as
part of a general RGB image generation framework.

Recall that height and weight (ξ, ω) are inputs to BM-
net. These are not natural outputs of SMPL; however they
are strongly correlated with body shape. We construct a dif-
ferentiable 3-layer neural network regressor h that predicts
height and weight ξ and ω from shape β. We train h in a su-
pervised fashion on the CAESAR dataset, which contains
subject height and weight as well as body mesh data. We
fit a gender-neutral SMPL model with 10 shape parameters
(β ∈ R10) to the body meshes, providing tuples (β, ξ, ω)
for training h. The choice of a gender-neutral model is
based on our earlier findings that gender contributes min-
imal improvement to height/weight prediction, and the fact
that gender must be determined either automatically (which
is error prone) or by asking the user (not everyone shares or

identifies with gender). Average prediction errors of h on
independent test sets are within 1 cm and 1 kg respectively.

Next we turn to ygt. For a given SMPL body mesh M
the 14 body measurements are obtained by computing the
lengths of curves traversing pre-specified vertex paths on
the mesh. These curve lengths are computed by summing
vertex-to-vertex distances along the path. This operation,
denoted ygt(β) = g(M(β, θ)), is the same used to annotate
the BodyM dataset (see Sec. 4). The fully differentiable
silhouette renderer is shown in Figure 1a.

In order to sample adversarial bodies we optimize β by
gradient ascent, backpropagating the gradient of the loss
with respect to β:

∇βL[fψ(xf (β), xl(β), ξ(β), ω(β)), ygt(β)], (5)

where height and weight depend on β via h(), and ygt de-
pends on β via g(). For body shape analysis (Sec. 5.1) we
fix pose θ to a canonical A-pose, while for training BM-
net, we sample θ randomly from poses of real humans in
the BodyM dataset. Henceforth we omit pose, camera and
lighting parameters for brevity. The β are updated using the
gradient ascent update rule:

βk+1 = βk+η∇βL[fψ(xf (β), xl(β), ξ(β), ω(β)), ygt(β)],
(6)

where η is a weight hyperparameter. Note that only β is
updated, and the weights ψ of the model f are fixed. We
illustrate the optimization in Figure 1b.

Adversarial augmentation: In order to train a network
in an adversarial manner, we need to ensure our adversar-
ial sampling selects diverse yet realistic body shapes. For
this purpose, when doing adversarial augmentation, we ini-
tialize β by selecting at random shape parameters that have
been fitted to real human bodies in the BodyM training set.
We then optimize these shapes for k iterations following the
update rule shown in Equation 6. This yields samples that
are challenging, yet close to real body shapes. An alternate
strategy would be to sample only around challenging exam-
ples in the training set; however we have found that exces-
sive emphasis on hard examples causes BMnet to overfit on
these and compromise mean performance.

We first pre-train BMnet on real examples from BodyM,
and then fine-tune for 10 epochs using synthetic examples
from the aforementioned augmentation. Training BMnet
minimizes the L1 difference between regressed and tar-
get measurements. Synthetic bodies are not repeated over
epochs, so that in 10 epochs the network sees roughly 10
times more data than the one using real data. Finally we
perform another fine-tuning on the real BodyM data to
bridge the synthetic-to-real domain gap. We note that syn-
thetic silhouettes produced by the rendererR are noise-free,
while silhouettes in BodyM are generated by segmenting
real RGB photos, and thus contain realistic noise artifacts.



Figure 2: Example frontal color photograph, frontal and profile segmentation masks, body measurements and height/weight
for different subjects in the BodyM Training Set (top) and the Test-B (bottom) datasets respectively.

Our augmentation strategy is inspired by adversarial train-
ing using pixel-level adversarial attacks [47], with some key
differences: (1) we search through interpretable parameters
of a simulator to find adversarial samples instead of modi-
fying image pixels using high-frequency noise; (2) we use a
gradient descent update instead of the quantized fast gradi-
ent sign update rule, since the latter leads to a coarse explo-
ration of the landscape that is not suitable when searching
for simulated adversarial examples in shape and pose space.
Note that some additional training computational cost ex-
ists, but is in the order of 1%.

4. BodyM Dataset

Synthetic datasets used in previous body measurement
work often lack the detail and diversity of real body shapes.
To address this domain gap, we introduce BodyM, the first
public dataset containing 8,978 frontal and lateral silhouette
photos paired with height, weight and 14 body measure-
ments for 2,505 real individuals. The ethnicity distribution
of BodyM is: White 40%, Asian 30%, Black/African Amer-
ican 14%, American Indian or Alaska Native 1%, Other
15%; with 15% of the individuals also indicating Hispanic.
The training-test breakdown is reported in Table 1 (top).
Table 1 (bottom) reports gender and BMI statistics. We
note that BMI ∈ 18.5-25 and BMI ∈ 25-30 are the domi-
nant body shape categories. RGB photos were captured in
a well-lit, indoor setup, with subjects standing in A-Pose
wearing tight-fitting clothing, as shown in Figure 2. Cap-
ture distance varied between 5.5-6.5 feet. Silhouettes were
obtained by applying semantic segmentation on RGB [13],
thus exhibiting realistic segmentation artifacts not found in
existing simulated datasets (e.g., Figure 2 top)3D scans of
each subject were acquired with a Treedy photogrammet-
ric scanner, registered to the SMPL mesh topology, and re-
posed to a canonical “A-pose”. The following body mea-
surements were then computed on the meshes using the

procedure described in Sec. 3.2: ankle girth, arm-length, bi-
cep girth, calf girth, chest girth, forearm girth, head-to-heel
length, hip girth, leg-length, shoulder-breadth, shoulder-to-
crotch length, thigh girth, waist girth, and wrist girth.

Train Test-A Test-B

Subjects 2,018 87 400
Silhouettes 6,134 1,684 1,160

Training Set Test-A Set Test-B Set

Male Female Male Female Male Female

GENDER 60% 40% 52% 47% 39% 61%
BMI <18.5 0% 2% 1% 3% 1% 4%
BMI 18.5-25 28% 23% 33% 31% 18% 37%
BMI 25-30 25% 9% 15% 7% 13% 10%
BMI 30-40 6% 5% 2% 6% 7% 7%
BMI 40-50 0% 1% 0% 0% 1% 3%
BMI >=50 0% 0% 0% 0% 0% 0%

Table 1: BodyM dataset statistics (top), gender and BMI
statistics for the BodyM (bottom).

For the training and Test-A sets, subjects were pho-
tographed and 3D-scanned by lab technicians. For the Test-
B set, subjects were scanned in the lab, but photographed in
a less-controlled environment with diverse camera orienta-
tions and lighting conditions, to simulate in-the-wild image
capture. For privacy reasons, we do not release the original
RGB images (not anyway needed by BMnet).

5. Experimental Results
For all experiments, unless noted, we train the baseline

BMnet for 150k iterations on the BodyM training set using
the Adam optimizer with a learning rate of 10−3 and a batch
size of 22. We select the best model using a validation set
corresponding to 10% of the training data. The learning
rate follows a multi-step schedule, whereby we reduce the
learning rate at 75% and 88% of the training.

Metrics: We define measurement accuracy based on
quantiles of absolute measurement errors. TP90 (TP75,
TP50) metrics are defined by computing the 90th (75th,



50th) quantile cutoff for all 14 measurements, and report-
ing the mean of these values. Mean absolute error (MAE)
is reported for selected experiments.

5.1. Adversarial Body Shape Analysis

We use ABS to reveal regimes of the body shape space
where a pre-trained BMnet performs poorly. We initialize
a 10-dimensional SMPL shape vector β to fall randomly
within a small ball of radius 0.01 around the zero-vector.
We then iteratively update β to maximize BMnet loss. The
camera parameters γ are chosen to mimic the setup used
to capture real images in BodyM. The lighting parameters
ι represent a point illumination source that shines directly
onto the subject from behind the camera, using only diffuse
lighting, in order to avoid specular artifacts from corrupting
the silhouette. While we fix pose, lighting and camera pa-
rameters as constants in this experiment, we note that our
framework can be readily generalized to adversarial sam-
pling of all these parameters.

For ABS we use adversarial sampling with a learning
rate η of 0.1 and k = 10. Shape parameters are clamped in
a [−3, 3] range to prevent unrealistic body shapes. We com-
pare samples generated using ABS to random body sam-
ples. Using this random sampling, we sample the shape
space uniformly in the [−3, 3] range. Our rationale is that
in the absence of prior knowledge about f , the uniform dis-
tribution is the maximum entropy distribution, hence pro-
viding the strongest sampling baseline.

We show qualitative comparisons between randomly
simulated bodies and adversarially simulated bodies in Fig-
ure 3, left. We observe that adversarial body shapes are
of high BMI compared to random bodies. The mean mea-
surement error of f for the adversarial bodies is also much
higher than that for random bodies. We also note adver-
sarial samples that are not of high BMI but with high mea-
surement error (third sample in Fig. 3, left). Fig. 3, right,
shows examples of real bodies, both random and samples
with high error. We observe that the error for the hard sam-
ples is similar to that of the simulated adversarial samples.
Furthermore, we can see that challenging samples in the real
world are also of high BMI, similar to our simulated adver-
sarial bodies. Aggregating this analysis over the entire pop-
ulation, the average BMI’s for the random and adversarial
body groups are 28.1 and 35.8 respectively; and the mean
measurement errors in millimeters (mm) for the two groups
are 34.8 and 92.2.

As another visualization, Figure 4 plots mean measure-
ment error vs. BMI for adversarially sampled and random
bodies. Error magnitudes are color-coded. We observe that
the adversarially sampled population contains more bod-
ies with higher error (red circles) and fewer bodies with
low error (green circles). Furthermore, the adversarially
sampled population contains many more samples with high

Overall Chest Hip Waist

TP90 TP75 TP50 MAE MAE MAE

Single-View 41.91 29.13 17.09 33.95 31.03 31.93
Multi-View 39.02 26.55 14.85 28.66 28.29 27.32
Multi-View + Height 20.21 13.87 8.00 19.38 15.97 18.71
Multi-View + Weight 18.55 12.62 7.20 15.22 10.54 13.69
Multi-View + Height + Weight 18.42 12.55 7.34 15.92 9.74 15.44

Table 2: Ablations on single- vs. multi-view and
height/weight inputs (errors in mm.) on BodyM TestA. Ad-
dition of a second view improves the accuracy of body mea-
surements. Adding only the weight has stronger (positive)
impact than adding only height. Robustness to outliers is
improved when adding both height and weight.

Overall Chest Hip Waist

TP90 TP75 TP50 MAE MAE MAE

Single-View (No Aug.) 19.10 13.00 7.64 19.18 11.53 16.12
Single-View (Random Aug.) 18.98 12.84 7.50 19.13 11.43 15.76
Single-View (Adv. Aug.) 18.90 12.82 7.44 18.84 11.14 15.78

Multi-View (No Aug.) 16.45 11.06 6.51 14.40 10.88 13.40
Multi-View (Random Aug.) 16.43 11.06 6.48 14.66 10.60 13.17
Multi-View (Adv. Aug.) 16.00 10.00 6.53 14.52 10.00 13.00

Multi-View (No Aug.) 26.52 17.64 10.04 24.60 19.55 21.75
Multi-View (Random Aug.) 26.13 17.35 9.90 23.09 18.87 22.44
Multi-View (Adv. Aug.) 25.00 16.28 9.50 22.98 18.09 21.10

Table 3: Ablations (on BodyM TestA) for synthetic data
augmentation strategies. BMNet trained on the full training
set (top two row blocks) and a reduced training set (bottom
row block). Adversarial augmentation achieves lower errors
(up to 10%) over no augmentation or random sampling.

BMI, which seem to directly contribute to higher mean er-
ror. In Figure 5 we visualize adversarial and random body
sampling in the first two principal dimensions of the la-
tent SMPL shape space. Again error magnitudes are color-
coded. Adversarial (and high-error) bodies are largely con-
centrated in the negative quadrant of the shape space. For
visual interpretation, Figure 6 shows that negative perturba-
tions in β1 and β2 result in taller and wide bodies.

5.2. Ablation Studies

We highlight the impact of key elements of our body
measurement estimation architecture in Table 2. First we
study the effects of using one (frontal) input silhouette vs.
two (frontal and lateral), as well as the effect of adding
height and weight as metadata inputs to the network.

The addition of a second (lateral) view improves re-
sults by providing additional evidence not found in the
frontal view. The addition of height and weight dramati-
cally affect the network’s ability to correctly predict mea-
surements. Adding only the weight has stronger impact
than adding only height. Robustness to outliers is im-
proved when adding both height and weight, evidenced by
the TP90 and TP75 metrics, although some specific mea-
surements are less accurate than when only using one input.



Figure 3: Comparison of randomly vs. adversarially simulated bodies (left). Comparison of random sampling vs. hard
examples of real bodies with high body measurement estimation error (right).

Ankle Arm Bicep Calf Chest Forearm H2H Hip Leg S-B S-to-C Thigh Waist Wrist Overall

Ours No Aug. 7.89 9.97 11.42 11.29 24.60 7.31 10.10 19.55 14.33 7.83 9.72 15.54 21.75 5.73 12.65
Ours Adv. Aug. 7.59 9.91 11.26 10.88 22.98 7.16 9.19 18.09 14.97 7.67 9.30 14.11 21.10 5.52 12.12

Table 4: Mean average individual measurement errors on Test-A using the reduced training set (bottom). H2H stands for
Head-to-Heel, S-B is Shoulder-Breadth and S-to-C is Shoulder-to-Crotch.

Figure 4: Prediction error vs. BMI for adversarial (left)
and random (right) body sampling. The adversarial scheme
selects more high-error and high-BMI samples (red ellipse)
than the random sampling, more concentrated in low-error
low-BMI areas (green ellipse).

Figure 5: Distribution of adversarial (left) vs. random
(right) sampling along the first two components of SMPL
shape space. Adversarial bodies are more concentrated in
the negative quadrant (red ellipse).

This could be attributed to slight noise in height and weight.
Next we evaluate the impact of augmenting real data

samples with synthetic data drawn from different sampling
strategies when training BMnet. We fit the SMPL model
with 10 shape and 72 pose parameters to each real body in
the BodyM training set. We then sample around these real
parameters, in order to create synthetic augmentations with
shape and pose in the vicinity of real bodies. We compare
two methods of augmentation: random sampling and the

Figure 6: Changes in body shape (from yellow to green)
from adding small negative perturbations to the 1st and 2nd
shape components. We surmise that the network underper-
forms with taller, larger, and wider bodies.

proposed adversarial sampling around the BodyM shape pa-
rameters. Random sampling is performed uniformly within
a hypercube with side length of 0.5 around the real shape
parameters. For adversarial sampling, we initialize shape
using the BodyM parameters and optimize using the Adam
optimizer for 5 steps using a learning rate of 0.1.

We also evaluate a baseline network trained only on real
BodyM data. All evaluations are performed on the indepen-
dent BodyM Test-A set, and results are reported in Table 3.
We observe that for the single-view scenario, random aug-
mentation achieves slightly better results than no augmenta-
tion, and adversarial augmentation further improves results
over random augmentation, with no additional data acqui-
sition cost. This trend is consistent across aggregate TP
metrics, most of the individual body measurements, and the
multi-view scenario. We see relatively uniform improve-
ments over different BMI categories.

We repeat the ablation study with a reduced training
dataset of 1K randomly chosen real samples (∼ 10% per-
cent of the data used in the previous experiment). Training
of BMnet thus weighs more heavily on synthetic augmen-
tation. Results are shown in the lowest block of Table 3.



Ankle Arm-L Bicep Calf Chest Forearm H2H Hip Leg-L S-B S-to-C Thigh Waist Wrist Overall

Dibra et al. [19] 2.0 2.7 3.3 3.3 7.2 2.3 4.0 6.0 2.8 2.9 2.9 4.9 8.1 2.0 3.78
Smith et al. [78] 2.1 1.7 2.7 2.3 4.7 1.9 2.3 3.0 1.5 1.9 1.5 2.4 4.8 2.5 2.72
Ours 0.8 1.9 1.7 0.8 4.6 1.3 3.6 1.8 2.1 0.9 1.9 1.7 3.8 0.7 1.97

Table 5: MAE (mm) for different methods on the simulated dataset from [78]. H2H stands for Head-to-Heel, Arm-L and
Leg-L is arm/leg length, S-B is Shoulder-Breadth and S-to-C is Shoulder-to-Crotch. Ours achieves up to 70% error reduction
on real-body measurements.

Neck Chest Waist Pelvis Wrist Bicep Forearm Arm Leg Thigh Calf Ankle Height Shoulder Overall

Yan et al. [90] 11.8 23.0 16.5 13.3 4.1 11.4 7.2 7.6 9.2 17.8 8.8 5.4 9.0 9.2 11.0
Ours 11.0 15.2 15.7 17.3 3.8 4.7 3.9 7.7 10.0 7.5 8.6 10.0 13.4 7.1 9.7

Yan et al. [90] 14.6 21.7 17.1 14.7 5.2 9.3 8.5 6.4 6.5 11.6 9.2 6.1 8.6 7.6 10.5
Ours 4.4 9.1 10.8 7.7 5.2 3.9 5.3 6.4 10.2 13.2 9.8 12.2 20.7 6.5 9.0

Table 6: MAE (mm) on Body-Fit [90] for male (top) and female (bot.) bodies with error reduction up to 70% using ours.
Overall Chest Hip Leg Length Waist

TP90 TP75 TP50 MAE MAE MAE MAE

SPIN [34] 81.10 57.33 33.96 74.45 65.41 35.81 77.39
STRAPS [72] 103.61 75.74 45.67 82.30 63.96 48.71 108.00
Sengupta et al. [69] 68.81 47.64 28.71 53.07 47.43 42.11 53.20
Ours (Single-View, No Metadata) 41.91 29.13 17.09 33.95 31.03 25.80 31.93

Table 7: Performance comparison for measurement estimation using different methods on the BodyM dataset.

Adversarial augmentation produces the best overall perfor-
mance, with significant improvements on several individual
measurements. This highlights the benefit of adversarial
sampling in scenarios where real data is limited. Finally,
in Table 4, we break down the performance of multi-view
BMnet by individual measurements, with and without ad-
versarial augmentation, in the reduced-data scenario. Ad-
versarial augmentation produces a noticeable decrease in
almost every individual body measurement error. Results
for the Test-B set are included in Sup. Mat.

5.3. State-of-the-Art Comparisons

We compare our method with recent state-of-the-art
body measurement approaches by Smith et al. [78] and Di-
bra et al. [19] on the simulated test set taken from [78]. Both
these techniques tackle body measurement estimation under
settings similar to ours, where inputs are silhouettes, pose is
constrained, and body shape is highly variable. One differ-
ence is that our method and [78] directly incorporate height
and weight inputs, while [19] infer height by assuming sub-
jects are captured at a fixed distance. In Table 5, we evalu-
ate our method with adversarial augmentation by ABS, and
follow the testing protocols described in [78], comparing
our method’s performance directly with numbers reported
in the respective references. Our method outperforms both
alternatives in terms of overall mean error and 10 out of 14
individual measurements, often by a significant margin (up
to 91% in the reduction of mean errors).

Table 6 compares our method with Yan et al. [90] on
real human bodies in their BodyFit dataset. We train multi-
view BMnet on BodyFit and adapt it to exclude height and
weight inputs. Errors for their approach are taken directly

from their paper. We outperform [90] on the majority of
measurements, as well as the overall average error, demon-
strating robustness of BMnet across different datasets.

Finally, for completeness, we compare our method
with recent human mesh reconstruction (HMR) methods,
SPIN [34], STRAPS [72], and Sengupta et al. [69] on
BodyM Test-A. We compute body measurements from
HMR by using the measuring function g on the predicted
mesh. For fair comparison, we evaluate our technique with
a single input and without height and weight metadata. Ta-
ble 7 shows that our method reduces most errors by more
than 35%. This error reduction is due to the fact that our
network directly regresses measurements and that we have
measurement supervision from the large training corpus in
BodyM - we compare against methods with direct measure-
ment prediction in Tables 5 and 6. Note in comparing Tables
5 and 7 that errors on real human data in BodyM are sub-
stantially higher than those on simulated data; demonstrat-
ing that BodyM provides a new challenging benchmark.

6. Conclusions
We propose BMnet to estimate body measurements from

silhouettes, height and weight. The key contribution is a
fully differentiable adversarial training scheme generating
challenging bodies within the SMPL shape space, and re-
vealing potential training gaps. When BMnet training is
augmented with these adversarial shapes, measurement ac-
curacy improves on real humans, producing new state-of-
the-art results, particularly when real data is limited. We
release BodyM, a new challenging large-scale dataset ac-
quired with real human subjects to promote progress in
body measurement research.
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and Markus Gross. Hs-nets: Estimating human body shape
from silhouettes with convolutional neural networks. In In-
ternational Conference on 3D Vision (3DV), pages 108–117,
2016. 1, 2, 3, 8

[20] Endri Dibra, Himanshu Jain, Cengiz Oztireli, Remo Ziegler,
and Markus Gross. Human shape from silhouettes using gen-
erative HKS descriptors and cross-modal neural networks.
In Conference on Computer Vision and Pattern Recognition
(CVPR), 2017. 2

[21] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Anto-
nio Lopez, and Vladlen Koltun. Carla: An open urban driv-
ing simulator. In Conference on robot learning, pages 1–16.
PMLR, 2017. 3

[22] Taosha Fan, Kalyan Vasudev Alwala, Donglai Xiang,
Weipeng Xu, Todd Murphey, and Mustafa Mukadam. Re-
vitalizing optimization for 3D human pose and shape es-
timation: A sparse constrained formulation. In Inter-
national Conference on Computer Vision (ICCV), pages
11457–11466, 2021. 1

[23] Yao Feng, Vasileios Choutas, Timo Bolkart, Dimitrios
Tzionas, and Michael J. Black. Collaborative regression of
expressive bodies using moderation. In International Con-
ference on 3D Vision (3DV), 2021. 1

[24] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora
Vig. Virtual worlds as proxy for multi-object tracking anal-
ysis. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 4340–4349, 2016. 3

[25] Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, S. M. Ali
Eslami, and Oriol Vinyals. Synthesizing programs for im-
ages using reinforced adversarial learning. In International
Conference on Machine Learning (ICML), 2018. 3

[26] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In Inter-



national Conference on Learning Representations (ICLR),
2015. 3
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A. Appendix

A.1. Body Shape Analysis

We include additional analysis of body shapes generated
by ABS vs. random sampling. Fig. 7 plots weight vs. height
for adversarial and random sampling. Consistent with anal-
ysis in Sec. 5.1 of the paper, we note that adversarial bodies
are more densely concentrated in regions of greater weight
and height. Fig. 8 plots the 3rd vs 4th SMPL [45] shape
components. Unlike the first two components, these two
variables do not distinctly separate ABS from random sam-
pling, indicating that rare body shapes manifest themselves
more strongly along some shape components than others.

Figure 7: Distribution of adversarial (left) vs. random
(right) sampling in terms of weight vs. height. Adversarial
bodies are more concentrated in regions of higher weight
and height.

Figure 8: Distribution of adversarial (left) vs. random
(right) sampling in terms of 4th vs 3rd principal component
(β) of SMPL shape. Adversarial and random sampling are
not clearly distinct along these two dimensions.

A.2. Additional Experimental Evaluation

We report additional results comparing our adversarial
augmentation with an augmentation-free baseline for train-
ing BMnet. In Table 8 we show results on the minimal-
clothing TestB subset. The findings are consistent: adver-
sarial augmentation improves results in terms of both over-
all and individual metrics. In Table 9 we show mean errors
for the individual body measurements from TestA. Adver-
sarial sampling improves accuracy for 11 out of 14 mea-
surements. The same analysis is performed on the reduced
training scenario on TestA (∼ 10% of the full training set)

in the main manuscript. The gains from adversarial aug-
mentation are even stronger in this scenario.

A.3. Limitations and Future Work

Similar to other adversarial training techniques, our
method incurs a, small but real (order of 1%), computational
overhead to achieve improved accuracy. Techniques such
as “Adversarial Training for Free!” [73] may be explored to
reduce training time and data storage. Our adversarial syn-
thesizer currently does not account for environmental vari-
ations that affect the input silhouettes, such as camera char-
acteristics, human pose variations, and segmentation noise.
Adversarial sampling incorporating these dimensions is a
fruitful future investigation. While some methods perform
test-time optimization [29], the focus is usually on pose op-
timization rather than shape. Further improvement of all
comparative methods in our work using test time optimiza-
tion is interesting, but beyond the scope of this work.

A.4. Societal Impact

1. Our system predicts intimate attributes about a person
(i.e. body measurements) from photo silhouettes. These at-
tributes are considered confidential, as they can be linked to
one’s health, personal lifestyle, and choices. It is therefore
important that such a pipeline is protected from access by
unqualified authorities who could generate and misuse con-
fidential body information. 2. Computer vision research in
the fashion domain has been supported by datasets that are
heavily biased to thin and tall body shapes. This is owed
to the preponderance of photos of models and celebrities
from which these datasets are sourced [44, 64, 89]. Con-
sequently, networks that estimate body shape and measure-
ments, and generate body avatars for virtual try-on expe-
riences, tend to produce larger errors for body shapes that
deviate from societal beauty standards. Our research aims
to increase inclusivity in body shape by discovering body
shapes that are rare with respect to available datasets. How-
ever, a purely computational approach to countering dataset
bias may also introduce other unfavorable biases; hence it
is important to check for alignment between the body shape
distributions generated by our method and realistic shape
distributions in a given demographic. In our work, we at-
tempt to address this issue by performing adversarial per-
turbations around real body shapes in BodyM.

A.5. Ethics Statement

While we present research and datasets on human body
measurement estimation, we take all precautions to respect
the privacy of all individuals who have contributed to our
data and research. Our collected human body dataset com-
prises silhouettes, height, weight and body measurements
which do not reveal subject identity. The outputs of our



Overall Chest Hip Leg Length Waist

TP90 TP75 TP50 MAE MAE MAE MAE
Single-View (No Aug.) 23.32 15.43 8.74 22.74 16.64 13.72 20.88
Single-View (Adv. Aug.) 23.24 15.43 8.55 22.67 16.41 13.58 20.78

Table 8: Comparison of No Augmentation (No Aug.) versus Adversarial Augmentation for BMnet on the minimal clothing
subdivision of TestB (errors in mm).

Ours Adv. Aug. Ours No Aug.

Ankle 5.56 5.48
Arm Length 7.07 7.26
Bicep 6.36 6.50
Calf 7.89 7.95
Chest 18.84 19.18
Forearm 5.18 5.36
Head-to-Heel 8.89 9.11
Hip 11.34 11.53
Leg-Length 11.24 11.39
Shoulder-Breadth 6.05 5.95
Shoulder-to-Crotch 8.90 8.85
Thigh 11.15 11.16
Waist 15.78 16.12
Wrist 4.31 4.35

Mean Error 9.19 9.30

Table 9: Mean measurement error comparison of Adversar-
ial Augmentation (Adv. Aug.) versus No Augmentation
(No Aug.) for training BMnet on TestA (errors in mm).

adversarial body simulator are synthetic. All subjects have
given written consent for the capture and release of the data.

A.6. Reproducibility

The BodyM dataset is publicly available at https:
//adversarialbodysim.github.io to enable re-
producibility of our method and further research in this area.

https://adversarialbodysim.github.io
https://adversarialbodysim.github.io

